p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.9Q8, (C2×C8).101D4, C8.1(C22⋊C4), C23.80(C2×Q8), (C22×C4).44Q8, C23.27(C4⋊C4), (C22×C4).272D4, C4.183(C4⋊D4), C4.C42⋊19C2, (C2×M4(2)).12C4, C4.56(C42⋊C2), C24.4C4.17C2, (C22×C8).213C22, (C23×C4).238C22, (C22×M4(2)).2C2, C22.23(C22⋊Q8), C2.8(M4(2).C4), (C22×C4).1333C23, C2.20(C23.7Q8), (C2×M4(2)).155C22, (C2×C8.C4)⋊2C2, (C2×C4).43(C4⋊C4), (C2×C8).143(C2×C4), C4.90(C2×C22⋊C4), C22.94(C2×C4⋊C4), (C2×C4).1321(C2×D4), (C2×C4).555(C4○D4), (C2×C4).531(C22×C4), (C22×C4).265(C2×C4), SmallGroup(128,543)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.9Q8
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=bde2, ab=ba, faf-1=ac=ca, eae-1=ad=da, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e3 >
Subgroups: 236 in 136 conjugacy classes, 60 normal (16 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C22⋊C8, C8.C4, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C4.C42, C24.4C4, C2×C8.C4, C22×M4(2), C24.9Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4⋊D4, C22⋊Q8, C23.7Q8, M4(2).C4, C24.9Q8
(2 6)(4 8)(9 31)(10 28)(11 25)(12 30)(13 27)(14 32)(15 29)(16 26)(17 21)(19 23)
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 17)(9 31)(10 32)(11 25)(12 26)(13 27)(14 28)(15 29)(16 30)
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 17)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 25)(16 26)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 28 24 12 5 32 20 16)(2 31 17 15 6 27 21 11)(3 26 18 10 7 30 22 14)(4 29 19 13 8 25 23 9)
G:=sub<Sym(32)| (2,6)(4,8)(9,31)(10,28)(11,25)(12,30)(13,27)(14,32)(15,29)(16,26)(17,21)(19,23), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,28,24,12,5,32,20,16)(2,31,17,15,6,27,21,11)(3,26,18,10,7,30,22,14)(4,29,19,13,8,25,23,9)>;
G:=Group( (2,6)(4,8)(9,31)(10,28)(11,25)(12,30)(13,27)(14,32)(15,29)(16,26)(17,21)(19,23), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,31)(10,32)(11,25)(12,26)(13,27)(14,28)(15,29)(16,30), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,28,24,12,5,32,20,16)(2,31,17,15,6,27,21,11)(3,26,18,10,7,30,22,14)(4,29,19,13,8,25,23,9) );
G=PermutationGroup([[(2,6),(4,8),(9,31),(10,28),(11,25),(12,30),(13,27),(14,32),(15,29),(16,26),(17,21),(19,23)], [(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,17),(9,31),(10,32),(11,25),(12,26),(13,27),(14,28),(15,29),(16,30)], [(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,17),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,25),(16,26)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,28,24,12,5,32,20,16),(2,31,17,15,6,27,21,11),(3,26,18,10,7,30,22,14),(4,29,19,13,8,25,23,9)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | ··· | 8H | 8I | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | - | - | |||
image | C1 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | Q8 | Q8 | C4○D4 | M4(2).C4 |
kernel | C24.9Q8 | C4.C42 | C24.4C4 | C2×C8.C4 | C22×M4(2) | C2×M4(2) | C2×C8 | C22×C4 | C22×C4 | C24 | C2×C4 | C2 |
# reps | 1 | 2 | 2 | 2 | 1 | 8 | 4 | 2 | 1 | 1 | 4 | 4 |
Matrix representation of C24.9Q8 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
13 | 0 | 0 | 0 | 0 | 0 |
8 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
0 | 0 | 0 | 0 | 16 | 0 |
13 | 13 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
G:=sub<GL(6,GF(17))| [16,2,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[13,8,0,0,0,0,0,4,0,0,0,0,0,0,0,13,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,13,0],[13,0,0,0,0,0,13,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,1,0,0,0,0,0,0,1,0,0] >;
C24.9Q8 in GAP, Magma, Sage, TeX
C_2^4._9Q_8
% in TeX
G:=Group("C2^4.9Q8");
// GroupNames label
G:=SmallGroup(128,543);
// by ID
G=gap.SmallGroup(128,543);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,64,422,723,2019,248,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=b*d*e^2,a*b=b*a,f*a*f^-1=a*c=c*a,e*a*e^-1=a*d=d*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations